Volume 4, Issue 2, June 2020, Page: 40-45
Oligosaccharide Chitosan: Viscosity, Molecular Weight, Antibacterial Activity, and Impact of γ Radiation
Vu Ngoc Boi, Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam
Nguyen Thi My Trang, Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam
Dang Xuan Cuong, Organic Matterial from Marine Resource, Nhatrang Institute of Technology Application and Research, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
Vu Thi Hoan, Institute of Biotechnology and Food, Industrial University of Ho Chi Minh City, Ho Chi Minh, Vietnam
Le Hai, Da Lat Nuclear Research Institute, Vietnam Atomic Energy Insitute, Da Lat, Vietnam
Received: Mar. 17, 2020;       Accepted: Mar. 30, 2020;       Published: Apr. 29, 2020
DOI: 10.11648/j.wjfst.20200402.14      View  61      Downloads  35
Abstract
Chitosan is a bioactive polymer produced from shrimp and crab shells, etc. According to VASEP (Vietnam Association of Seafood Exporters and Producers), the production of raw shrimp cultured in Vietnam was about 800,000 tons in 2018. Therefore, the shrimp processing industry has generated about 320,000 tons of wastes, including heads and shells. If wastes are not utilized and managed in proper ways, it can lead to serious environmental problems. In our study, shrimp shells were used to produce chitosan and further obtained oligochitosan for application in food preservation. The cobalt-60 radiation technology has been used to segment chitosan into oligochitosan. The radiation dose applied to chitosan solution was in the range of 25 ÷ 50 kGy and in the range of 66 ÷ 166 kGy for chitosan flakes. The results showed that the chitosan solution had higher segmental efficiency compared to that of chitosan flakes. The antibacterial activities of oligosaccharide chitosan segmented from chitosan flakes were higher than those of oligosaccharide chitosan segmented from chitosan solution. The highest antibacterial activities were observed in the oligochitosan segmented from chitosan flakes at the radiation dose of 66 kGy for all tested bacteria: E. coli O157:H7, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Bacillus subtilis. In addition, oligochitosan segmented from chitosan flakes at the radiation dose of 66 kGy had higher antibacterial activities on bacteria gram (-) than bacteria gram (+). The strongest antibacterial activities on L. monocytogenes and B. subtilis at the concentration of 0.3125%.
Keywords
Radiation, Chitosan, Oligochitosan, Antibacterial, Bacteria Gram (-), Bacteria Gram (+)
To cite this article
Vu Ngoc Boi, Nguyen Thi My Trang, Dang Xuan Cuong, Vu Thi Hoan, Le Hai, Oligosaccharide Chitosan: Viscosity, Molecular Weight, Antibacterial Activity, and Impact of γ Radiation, World Journal of Food Science and Technology. Special Issue: Marine Bio-Polymer: Bio-Activity, Extraction and Application. Vol. 4, No. 2, 2020, pp. 40-45. doi: 10.11648/j.wjfst.20200402.14
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Yongjae L., Hyun-Wook, K. and Yuan, H. B. K. (2018). New route of chitosan extraction from blue crabs and shrimp shells as flocculants on soybean solutes. Food Sci Biotechnol, 27 (2): 461-466.
[2]
Thirunavukkarasu N. and Shanmugam, A. (2009). Extraction of chitin and chitosan from Mud crab scylla tranquebarica (fabricius, 1798). Int J Applied Bioeng, 4 (2): 31-33.
[3]
Dang X. D. and Bui, X. V. (2019). Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv Mater Sci Eng (Special): 1-8.
[4]
Bing Y., Lu Li, Congxia, X., Kun, L. and Shitao, Y. (2014). Preparation of oligochitosan via In situ enzymatic hydrolysis of chitosan by amylase in [Gly] BF4 ionic liquid/water homogeneous system. J Appl Polym Sci, 131 (23): 1-9.
[5]
Shuang L., Yaxuan, S. and Xueling, D. (2018). A review of the preparation, analysis and biological functions of chitooligosaccharide. Int J Mol Sci, 19 (8): 2197.
[6]
Nguyen N. D., Dang, V. P., Nguyen, T. A. and Nguyen, Q. H. (2011). Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat Phys Chem, 80 (7): 848-853.
[7]
Andrew J. (2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother, 48 (S1): 5-16.
[8]
Duy N. N., Phu, D. V., Anh, N. T. and Hien, N. Q. (2011). Synergistic degradation to prepare oligochitosan by γ-irradiation of chitosan solution in the presence of hydrogen peroxide. Radiat Phys Chem, 80 848-853.
[9]
Alburquenque C., Bucarey, S., Neira-Carrillo, A., Urzúa, B., Hermosilla, G. and Tapia, C. (2010). Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol, 48 (8): 1018-1023.
[10]
Hai L., Diep, T. B., Naotsugu, N., Fumio, Y. and Tamikazu, K. (2003). Radiation depolymerization of chitosan to prepare oligomers. Nucl Instrum Methods Phys Res B, 208 466-470.
[11]
Czechowska-Biskup R., Wach, R., Rosiak, J. and Ulański, P. (2018). Progress on Chemistry and Application of Chitin and its Derivatives. Progress on chemistry and application of chitin and its derivatives. Poland. XXIII.
[12]
Naoual J., Abdelaziz, B. and Mohammed, B. (2011). Probiotic Potential of Lactobacillus trains isolated from known popular traditonal Moroccan dairy products. Br Microbiol Res J, 1 (4): 79-94.
[13]
Seyfarth F., Schliemann, S., Elsner, P. and Hipler, U. (2008). Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm, 353 (1-2): 139-148.
[14]
Ulanski P. and Rosiak, J. (1992). Preliminary study on radiation-induced changes in chitosan. Radiat Phys Chem, 39 53-57.
[15]
Hiroaki S., et al. (2019). Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa, Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus. PLoS One, 14 (5): e0217504.
[16]
Suyeon K. (2018). Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 1-13.
[17]
Suphavadee C. (2018). Antibacterial activity of chito-oligosaccharides (COSS) from shrimp shells wastes. Adv Plants Agric Res, 8 (6): 392‒394.
[18]
Zivanovic S., Basurto, C., Chi, S., Davidson, P. and Weiss, J. (2004). Molecular weight of chitosan influences antimicrobial activity in oil-in-water emulsions. J Food Prot, 67 (5): 952-959.
[19]
Jeon S., Oh, M., Yeo, W.-S., Galva˜o, K. and Jeong, K. (2014). Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS ONE, 9 (3): e92723.
[20]
Andres Y., Giraud, L., Gerente, C. and Cloirec, P. L. (2007). Antibacterial effects of chitosan powder: Mechanisms of action. Environ Technol, 28 (12): 1357-1363.
[21]
Jianhui L., Yiguang, W. and Liqing, Z. (2016). Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr Polym, 148 (5): 200-205.
[22]
Chen W., Wu, Q., Zhang, J. and Wu, H. (2008). Antibacterial mechanism of chitosan. Wei Sheng Wu Xue Bao, 48 (2): 164-168.
Browse journals by subject